3.6.86 \(\int \sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx\) [586]

Optimal. Leaf size=200 \[ -\frac {12 a b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (7 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {12 a b \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 \left (7 a^2+5 b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {4 a b \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b^2 \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d} \]

[Out]

2/21*(7*a^2+5*b^2)*sec(d*x+c)^(3/2)*sin(d*x+c)/d+4/5*a*b*sec(d*x+c)^(5/2)*sin(d*x+c)/d+2/7*b^2*sec(d*x+c)^(7/2
)*sin(d*x+c)/d+12/5*a*b*sin(d*x+c)*sec(d*x+c)^(1/2)/d-12/5*a*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)
*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/21*(7*a^2+5*b^2)*(cos(1/2*d*x+1/2
*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 200, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3873, 3853, 3856, 2719, 4131, 2720} \begin {gather*} \frac {2 \left (7 a^2+5 b^2\right ) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{21 d}+\frac {2 \left (7 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {4 a b \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {12 a b \sin (c+d x) \sqrt {\sec (c+d x)}}{5 d}-\frac {12 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b^2 \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{7 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(5/2)*(a + b*Sec[c + d*x])^2,x]

[Out]

(-12*a*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*(7*a^2 + 5*b^2)*Sqrt[Cos[
c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (12*a*b*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(5*d
) + (2*(7*a^2 + 5*b^2)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(21*d) + (4*a*b*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d)
 + (2*b^2*Sec[c + d*x]^(7/2)*Sin[c + d*x])/(7*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3873

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[2*a*(b/d
), Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rubi steps

\begin {align*} \int \sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx &=(2 a b) \int \sec ^{\frac {7}{2}}(c+d x) \, dx+\int \sec ^{\frac {5}{2}}(c+d x) \left (a^2+b^2 \sec ^2(c+d x)\right ) \, dx\\ &=\frac {4 a b \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b^2 \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{5} (6 a b) \int \sec ^{\frac {3}{2}}(c+d x) \, dx+\frac {1}{7} \left (7 a^2+5 b^2\right ) \int \sec ^{\frac {5}{2}}(c+d x) \, dx\\ &=\frac {12 a b \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 \left (7 a^2+5 b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {4 a b \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b^2 \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}-\frac {1}{5} (6 a b) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{21} \left (7 a^2+5 b^2\right ) \int \sqrt {\sec (c+d x)} \, dx\\ &=\frac {12 a b \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 \left (7 a^2+5 b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {4 a b \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b^2 \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}-\frac {1}{5} \left (6 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{21} \left (\left (7 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=-\frac {12 a b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (7 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {12 a b \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 \left (7 a^2+5 b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {4 a b \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b^2 \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.58, size = 139, normalized size = 0.70 \begin {gather*} \frac {\sec ^{\frac {7}{2}}(c+d x) \left (-504 a b \cos ^{\frac {7}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 \left (7 a^2+5 b^2\right ) \cos ^{\frac {7}{2}}(c+d x) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 \left (35 a^2+55 b^2+273 a b \cos (c+d x)+5 \left (7 a^2+5 b^2\right ) \cos (2 (c+d x))+63 a b \cos (3 (c+d x))\right ) \sin (c+d x)\right )}{210 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(5/2)*(a + b*Sec[c + d*x])^2,x]

[Out]

(Sec[c + d*x]^(7/2)*(-504*a*b*Cos[c + d*x]^(7/2)*EllipticE[(c + d*x)/2, 2] + 20*(7*a^2 + 5*b^2)*Cos[c + d*x]^(
7/2)*EllipticF[(c + d*x)/2, 2] + 2*(35*a^2 + 55*b^2 + 273*a*b*Cos[c + d*x] + 5*(7*a^2 + 5*b^2)*Cos[2*(c + d*x)
] + 63*a*b*Cos[3*(c + d*x)])*Sin[c + d*x]))/(210*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(688\) vs. \(2(224)=448\).
time = 0.30, size = 689, normalized size = 3.44

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 a^{2} \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{6 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )+\frac {4 b a \left (24 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-12 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{5 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}+2 b^{2} \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{56 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{4}}-\frac {5 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{42 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}+\frac {5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{21 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(689\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(5/2)*(a+b*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*a^2*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*
x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))
)+4/5*b*a/sin(1/2*d*x+1/2*c)^2/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)*(24*s
in(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/
2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*(2*sin(1/2*
d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+
8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli
pticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*b^2*(-1/56*cos(1/2*d
*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^4-5/42*cos(1/2*d*x+1
/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d*x+1/2*
c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(c
os(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)*(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^2*sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.90, size = 235, normalized size = 1.18 \begin {gather*} \frac {-126 i \, \sqrt {2} a b \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 126 i \, \sqrt {2} a b \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 5 \, \sqrt {2} {\left (7 i \, a^{2} + 5 i \, b^{2}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, \sqrt {2} {\left (-7 i \, a^{2} - 5 i \, b^{2}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + \frac {2 \, {\left (126 \, a b \cos \left (d x + c\right )^{3} + 42 \, a b \cos \left (d x + c\right ) + 5 \, {\left (7 \, a^{2} + 5 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 15 \, b^{2}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{105 \, d \cos \left (d x + c\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)*(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

1/105*(-126*I*sqrt(2)*a*b*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*si
n(d*x + c))) + 126*I*sqrt(2)*a*b*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c)
 - I*sin(d*x + c))) - 5*sqrt(2)*(7*I*a^2 + 5*I*b^2)*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I
*sin(d*x + c)) - 5*sqrt(2)*(-7*I*a^2 - 5*I*b^2)*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin
(d*x + c)) + 2*(126*a*b*cos(d*x + c)^3 + 42*a*b*cos(d*x + c) + 5*(7*a^2 + 5*b^2)*cos(d*x + c)^2 + 15*b^2)*sin(
d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(5/2)*(a+b*sec(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)*(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^2*sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))^2*(1/cos(c + d*x))^(5/2),x)

[Out]

int((a + b/cos(c + d*x))^2*(1/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________